What is Tamr Unify and How Does It Differ from MDM & ETL Tools?

There is a lot in flux with the data management industry, and naturally it’s causing confusion. Companies collect data at a rapidly expanding rate, and the old processes in place to master this data severely limit their ability to make sense of it all.

As we know, unmastered data leads to a host of problems from the inability to optimize business operations effectively to leaving you susceptible to data breaches and compliance issues.

MDM vs. ETL

What are your current data mastering options and what are the pros and cons of each? Let’s review:

Master Data Management (MDM): The MDM process involves creating a master record where all entities used across the organization are defined. The idea is to merge all the individual records and match that to the entity in the master record using rules to accomplish the task. Here’s a few examples of what this looks like from Michael Stonebraker’s 7 Tenets Of Scalable Data Unification:

      • “Dick” matches “Richard” in the name field
      • -99 matches null in the salary field
      • If systems A and B have different values for address, then use the one from system A

MDM Pros: MDM provides a “golden record”, which is meant to be the “source of truth” about an entity that other sources can reference downstream. These systems also provide insight into the lineage of these records and flexibility in defining how these records are created. In theory, when done without errors, you should have no issue with duplicates or unmatched data, and be able to provide consumption tools with an accurate view of each entity.

MDM Cons: You’re relying on a rules-based golden record, which requires a human-intensive process to deliver. This is not scalable and is dependent upon continuous, manual review of exceptions. Because of this, you will not only leave a large portion of your data unmastered, but you also pay a premium in resource costs to leave yourself susceptible to human error.

Extract, Transform, & Load (ETL): The ETL method is a widely adopted data mastering process that’s been around for 20+ years. It involves creating a global schema up front using a programmer to understand how the schema is used and writing conversion routines, cleaning and transformation routines, and continuously updating it over time to ensure accuracy.

ETL Pros: ETL is a very effective way to move data, and can also be used to perform mastering when simple rules will suffice (e.g., “Inc.” equals “Incorporated”).

ETL Cons: It’s impossible to scale using ETL since it’s so laborious in nature. This is not a viable option for companies that collect a large (and continuously growing) amount of data. ETL is also not designed to deliver a golden record, a key output of the mastering process that is necessary to drive consistency across consumption points.

It’s hard to believe that MDM and ETL are the most widely used data mastering processes given their inability to scale. For years, companies have had to settle for not being able to leverage a large portion of their data until now.

The Modern, Agile Solution to Data Mastering

Having a platform that allows for complete data unification is the solution to data mastering at scale. It works by taking your data from all facets of the business and unifying it by using a combination of machine learning and human expertise. It’s the solution to MDM and ETL shortcomings, allowing companies to master all of their data in an efficient and effective manner.

Some platforms (like Tamr) even use machine learning and automation to continually evolve and update as your data changes and grows.

Just how big of an impact can a data mastering platform like Tamr having on your bottom line? For tech giant GE, it meant a savings of 80 million.

The Future Of Data Mastering Is Agile

Tamr differs from traditional data tools like MDM and ETL by using an agile approach to tackle data mastering. As we all know, agile completely transformed software development, and it’s set to do the same with data thanks to Tamr.

Stop relying on outdated methods that leave your data largely unusable and join the DataOps revolution with Tamr today. Contact us to learn more or request a demo.

Download the full version of Michael Stonebraker’s 7 Tenets of Scalable Data Unification below:

The Seven Tenets of Scalable Data Unification – Dr. Michael Stonebraker

Whitepaper

This paper defines the concept and process of data unification and compares different technical approaches to achieving the desired end-state of clean, accurate, consolidated data sets.

Download Now



Matt Holzapfel leads Solutions at Tamr. He is responsible for delivering new offerings that combine Tamr’s software products with data and services to help customers realize more value from their data. Matt has worked directly with many of Tamr’s largest customers, enabling them to successfully deploy Tamr’s Solutions.